**Tuk-Rivet®
Punched rivet system**

The process

Punch riveting with a solid rivet permits one or more joined elements such as semi-finished product types, sheet, profile and cast components to be fastened together.

During this process, the workpieces are clamped to the bottom die by the hold-down device. They are then punched by the solid Tuk-Rivet® that acts at the same time as the blanking die. When the stop-point is reached both the hold-down device and rivet punch are flush with the workpiece surface.

As a result of the compressive force applied by the rivet punch and the hold-down device the shape of the bottom die forces material into the peripheral shank groove in the Tuk-Rivet®.

This acts against the flow of material generated by the rivet punch and hold-down device.

Field of application

Wherever connections of thin metal mouldings with a high loading capacity have to be produced quickly, the Tuk-Rivet® is the ideal fastening element.

- For joining workpieces made of aluminium to steel as well as rustproof and acid proof sheet steels.
- For joining thin-walled components made of aluminium to sheet steels.
- For joining thick and thin sheets, whereby the lower sheet should have a minimum thickness of 0.9 mm.

Product characteristics

- Accurate production quality
- Largely flush finish on both sides
- Self-punching, no hole punching problems, reduced installation costs
- High-strength connection
- Ideal for plastic-coated or surface-treated parts
- Suitable for steel, stainless steel and light alloy sheet
- Replaces spot welding, no environmental pollution
- Integration possible in production lines, no separate workplace required
- The rivet head is covered by painting, no additional work stage required
- Hybrid construction possible
- Greater material thickness difference can be processed with multi-zone rivet
Application

Tuk-Rivet® is a punched rivet made of rust and acid proof material or steel for the manufacture of highly load resistant riveted joints in thin section components.

<table>
<thead>
<tr>
<th>Article number</th>
<th>Works Standard 492 0 / 493 0</th>
<th>Works Standard 492 1 / 493 1</th>
<th>Length B</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.00003...</td>
<td>2.5 mm – 2.7 mm</td>
<td>2.1 mm – 2.7 mm</td>
<td>2.7</td>
</tr>
<tr>
<td>49.00004...</td>
<td>2.8 mm – 3.0 mm</td>
<td>1.8 mm – 3.0 mm</td>
<td>3.0</td>
</tr>
<tr>
<td>49.00005...</td>
<td>3.1 mm – 3.3 mm</td>
<td>2.1 mm – 3.3 mm</td>
<td>3.3</td>
</tr>
<tr>
<td>49.00006...</td>
<td>3.4 mm – 3.6 mm</td>
<td>1.8 mm – 3.6 mm</td>
<td>3.6</td>
</tr>
<tr>
<td>49.00007...</td>
<td>3.7 mm – 3.9 mm</td>
<td>2.1 mm – 3.9 mm</td>
<td>3.9</td>
</tr>
<tr>
<td>49.00008...</td>
<td>4.0 mm – 4.2 mm</td>
<td>1.8 mm – 4.2 mm</td>
<td>4.2</td>
</tr>
<tr>
<td>49.00009...</td>
<td>4.3 mm – 4.5 mm</td>
<td>2.1 mm – 4.5 mm</td>
<td>4.5</td>
</tr>
<tr>
<td>49.00010...</td>
<td>4.6 mm – 4.8 mm</td>
<td>2.4 mm – 4.8 mm</td>
<td>4.8</td>
</tr>
<tr>
<td>49.00011...</td>
<td>4.9 mm – 5.1 mm</td>
<td>2.7 mm – 5.1 mm</td>
<td>5.1</td>
</tr>
<tr>
<td>49.00012...</td>
<td>5.2 mm – 5.4 mm</td>
<td>3.0 mm – 5.4 mm</td>
<td>5.4</td>
</tr>
<tr>
<td>49.00013...</td>
<td>5.5 mm – 5.7 mm</td>
<td>3.3 mm – 5.7 mm</td>
<td>5.7</td>
</tr>
<tr>
<td>49.00014...</td>
<td>5.8 mm – 6.0 mm</td>
<td>3.6 mm – 6.0 mm</td>
<td>6.0</td>
</tr>
<tr>
<td>49.00015...</td>
<td>6.1 mm – 6.3 mm</td>
<td>3.9 mm – 6.3 mm</td>
<td>6.3</td>
</tr>
<tr>
<td>49.00016...</td>
<td>6.4 mm – 6.6 mm</td>
<td>4.2 mm – 6.6 mm</td>
<td>6.6</td>
</tr>
<tr>
<td>49.00017...</td>
<td>6.7 mm – 6.9 mm</td>
<td>4.5 mm – 6.9 mm</td>
<td>6.9</td>
</tr>
<tr>
<td>49.00018...</td>
<td>7.1 mm – 7.2 mm</td>
<td>4.8 mm – 7.2 mm</td>
<td>7.2</td>
</tr>
<tr>
<td>49.00019...</td>
<td>7.3 mm – 7.5 mm</td>
<td>5.1 mm – 7.5 mm</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Minimum thickness for lower material: ≥ 0.9 mm

Example for locating the article number

Stainless steel Tuk-Rivet® for 3.0 mm total material-thickness, Works Standard 492 0:
Tuk-Rivet® 492 000 004.900

Materials

Steel, tempered, zink/nickel-plated, transparent passivated
Stainless steel, hardened

Other finishes upon request

Tolerances

ISO 2768-m
Punching Rivet and Composites ...

Multigrade Rivet according to Works Standard 492 1
Light-alloy \(t = 1,7 \) mm +
\[22\text{MnB5}\] \(t = 0,8 \) mm +
Light-alloy \(t = 1,7 \) mm

Punching Rivet according to Works Standard 492 0
Magnesium \(t = 3,0 \) mm +
Light-alloy \(t = 2,0 \) mm

Special Rivet according to Works Standard 492 0
FRP \(t = 2,3 \) mm +
Light-alloy \(t = 1,7 \) mm

Repair with Hand Riveter ...

For small piece numbers or repair jobs, a rechargeable battery-operated manual riveter can be used together with suitable solid punched rivets. One battery charge is sufficient for around 300 riveting operations. A full charge takes around 60 minutes. The riveter can also be operated directly from a 230 V mains connection. The riveting operation requires access on both sides.
Enquiry data sheet
Punched rivet / Multi-zone punched rivet
Fax to KerbKonus
+49 9621 679444

Enquiry from: ____________________________
Project: ____________________________
Contact: ____________________________
Company: ____________________________
Mr/Ms: ____________________________
Phone: ____________________________
Fax: ____________________________
Piece no.: ____________________________

I require
- A quotation □
- A sample □
- Technical advice □

1. Application

<table>
<thead>
<tr>
<th>Material</th>
<th>Surface</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheet 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheet 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheet 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of joints/component:

2. Requirements

Joint stress exposure: :: Direction: □ Shear tension □ Peel tension □ Cross tension
Type: □ Static □ Vibratory □ Force [N]
Bottom die projection admissible: □ yes □ no
Corrosion requirements

3. Accessibility

Flange width
Length of rivet points
Disturbance points/Obstacles
(Drawings/sketches)

4. Punched rivet geometry

Length
□ Works Standard 492 0
□ Works Standard 493 0
□ Works Standard 492 1
□ Works Standard 493 1

Schematic diagram

5. Machine design

C frame: □ Balancer □ Stationary □ Robot
Special tool: □ Integrated in press □ Special purpose machine
Operation using: □ Foot pedal □ Hand switch □ Two-hand switching

6. Production

Pcs./year: Running time: Cycle time:

Date/Signature
... Strength values for Data sheet enquiry

Strength values

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness above [mm]</th>
<th>Thickness below [mm]</th>
<th>Shear tension [kN]</th>
<th>Cross tension [kN]</th>
<th>Peel tension [kN]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4016</td>
<td>1,5</td>
<td>1,5</td>
<td>5,4</td>
<td>2,5</td>
<td>1,3</td>
</tr>
<tr>
<td>1.4301</td>
<td>1,5</td>
<td>1,5</td>
<td>6,0</td>
<td>2,8</td>
<td>1,5</td>
</tr>
<tr>
<td>1.4003</td>
<td>2,0</td>
<td>2,0</td>
<td>6,8</td>
<td>3,7</td>
<td>2,2</td>
</tr>
<tr>
<td>1.4301</td>
<td>2,0</td>
<td>2,0</td>
<td>7,0</td>
<td>3,2</td>
<td>2,0</td>
</tr>
<tr>
<td>H260</td>
<td>1,5</td>
<td>1,5</td>
<td>3,5</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>H420</td>
<td>1,5</td>
<td>1,5</td>
<td>4,8</td>
<td>1,7</td>
<td></td>
</tr>
<tr>
<td>H340</td>
<td>2,0</td>
<td>2,0</td>
<td>5,8</td>
<td>2,1</td>
<td></td>
</tr>
<tr>
<td>H420</td>
<td>2,5</td>
<td>2,5</td>
<td>7,5</td>
<td>2,8</td>
<td></td>
</tr>
<tr>
<td>AlMg 3 / Al - DG</td>
<td>2,0</td>
<td>2,2</td>
<td>2,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al Mg 3</td>
<td>2,0</td>
<td>2,0</td>
<td>2,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bondal 1.4301</td>
<td>1,5</td>
<td>2,5</td>
<td>5,0</td>
<td>2,4</td>
<td></td>
</tr>
<tr>
<td>H300</td>
<td>1,5</td>
<td>1,5</td>
<td>4,6</td>
<td>1,6</td>
<td>1,4</td>
</tr>
<tr>
<td>DC 04</td>
<td>1,5</td>
<td>1,5</td>
<td>3,5</td>
<td>1,4</td>
<td>1,1</td>
</tr>
<tr>
<td>AlMg5Mn</td>
<td>1,5</td>
<td>1,5</td>
<td>2,7</td>
<td>1,2</td>
<td>0,8</td>
</tr>
<tr>
<td>AC120</td>
<td>1,5</td>
<td>1,5</td>
<td>2,6</td>
<td>1,2</td>
<td>0,8</td>
</tr>
</tbody>
</table>

... Instantly recognisable setting guide for optimum Tuk-Rivet® connections

Correctly pressed in

![Correctly pressed in](fig.4)

Pressed in too far

![Pressed in too far](fig.5)

Not pressed in enough

![Not pressed in enough](fig.6)

Rivet too short/sheet thickness too great

![Rivet too short/sheet thickness too great](fig.7)

Rivet too long/sheet thickness too low

![Rivet too long/sheet thickness too low](fig.8)

Rivet length OK
No embossing — insufficient embossing force

![Rivet length OK](fig.9)